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ABSTRACT

Machine learning is growing in importance in industry, sci-
ences, and many other fields. In many and perhaps most of
these applications, users need to trade off competing goals.
Machine learning, however, has evolved around the optimiza-
tion of a single, usually narrowly-defined criterion. In most
cases, an expert makes (or should be making) trade-offs be-
tween these criteria which requires high-level (human) in-
telligence. With interactive customization and optimization
the expert can incorporate secondary criteria into the model-
generation process in an interactive way.

In this paper we develop the techniques to perform cus-
tomized and interactive model optimization, and demonstrate
the approach on several examples. The keys to our approach
are (i) a machine learning architecture which is modular and
supports primary and secondary loss functions, while users
can directly manipulate its parameters during training (ii)
high-performance training so that non-trivial models can be
trained in real-time (using roofline design and GPU hard-
ware), and (iii) highly-interactive visualization tools that sup-
port dynamic creation of visualizations and controls to match
various optimization criteria.
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INTRODUCTION

Machine Learning is now at the center of data analysis in
many fields across the sciences, business, health care and
other realms. In many areas, users really want solutions with
good performance in multiple dimensions while most ML
methods optimize a single narrow criterion. e.g. in compu-
tational advertising, the exchanges’ primary goal is to maxi-
mize revenue. But they must also satisfy marketers by pro-
viding sufficient high-quality ad impressions, and they must
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placate end-users by not deluging them with ads. More gen-
erally, unsupervised models often under-specify users goals.
Basic clustering methods (e.g. K-Means) minimize only
sample-to-centroid distance, and there is no control over
cluster size. But users often expect different clusters to be
well-separated and similar-sized. Topic models such as La-
tent Dirichlet Allocation (LDA) produces topics that best
predict the data, but users often want those topics to be
well-separated which LDA does not model. Finally, many
unsupervised methods including K-Means and LDA, opti-
mize non-convex criteria with many local modes. Simu-
lated annealing is one approach to improving model quality,
but it requires careful tuning and scheduling. Even for su-
pervised learning, we need to tune L1/L2 regularization to
trade-off training accuracy and validation accuracy, or even
AIC (Akaike information criterion)/ BIC(Bayesian informa-
tion criterion) which are used to measure generalization abil-
ity. Therefore, including human control can steer the solution
more rapidly toward an optimum.

Because ML models today are not flexible enough to incorpo-
rate all these criteria, secondary constraints are often applied
after model training (by overriding the model’s choices) in a
way that is inevitably sub-optimal. By contrast, inferactive
customization and optimization allows the analysts to incor-
porate secondary constraints into the model-generation pro-
cess in an interactive way. There are several benefits to this:

e Models can be fully optimized given a suitable mixture of
the criteria.

e Families of models can be trained to deal with variability
in the application context.

e Analysts can explore the effects of particular trade-offs in-
stantly, without waiting for a live test.

e Through this exploration, an analyst can gain intuition for
the effects of various criteria, and make better trade-offs in
the long run.

In order to do so, we use a machine learning architecture
which is modular and supports primary and secondary loss
functions. We use an weighted additive loss function to rep-
resent different criteria and turn multi-objective optimization
problem into a parameter tuning problem, (i.e, tuning the
weights for each individual loss function)

Even though people can trade-off different criteria by chang-
ing the weights of their cost functions, hyper-parameter tun-
ing remains to be a difficult task even for single-objective ma-
chine learning problems. Lots of research [3, 34, 26, 2, 24,



10] have been done just for optimizing the training loss. In
our case, however, tuning hyper-parameters will change the
loss function itself. The value of the loss functions are just
performance indicators rather than ultimate goals of the users.
Users are supposed to discover the loss function combina-
tion that best match their model preferences during the tuning
process. Therefore, instead of using those auto tuning algo-
rithms, we allow the users to directly manipulate parameters
during training, and observe the feedback in real-time. Di-
rect parameter manipulation such as Tensorflow Playground
[33] turns out to be very intuitive for people to tune and un-
derstand their models. But that works only for small scale
dataset. Our tool instead leverages GPU hardware and mini-
batch training strategy to deliver real-time user feedback on
real-world dataset for a variety of models. Users can dynam-
ically create highly-interactive visualizations and controls to
match various optimization criteria. We will discuss the both
system design and the interface design in later chapters.

RELATED WORK

Interactive model refinement

In the context of supervised learning, Fail and Olsen [15]
describes partially-supervised learning with a user supplying
some (sparse) labelled data to help an ML algorithm label
the rest. A number of other works have followed this route,
by focusing on manipulation of the training data rather than
internals of a particular algorithm. Other work focused on
human-assisted feature selection (rather than algorithm train-
ing) [31]. The Prospect system [30] automates model se-
lection and tuning allowing users to focus on data manipu-
lation. EnsembleMatrix [35] uses custom visualizations to
aid in the design of ensemble classifiers. Amershi et al. [1]
provides a detailed summary of the work in this area. Much
of these work attempt to improve only the accuracy of a
machine learning problem by adding a human in the loop,
which is quite different from our work. Perhaps the closest
to ours is [20] which integrates a human-assisted optimiza-
tion strategy with the design of multi-class classifiers. But
our framework is not limited to classification problem and we
focus on different families of optimization algorithms. An-
other interactive hyper-parameter tuning tool called Tensor-
flow playground [33] has been a good educational tool for
people who want to understand how neural network works
and how hyper-parameters may affect the model. But it runs
on toy dataset while our system can provide real-time feed-
back when training on real-world datasets.

Interactive clustering

Interactive clustering is another active sub-area. Since clus-
tering is widely-used to simplify the interpretation of large
datasets, and since the natural metrics for a new domain may
be difficult to articulate, interactive exploration [14, 32, 40] is
a natural and powerful approach. In [14, 32], the authors used
visualizations to rapidly explore the results of a clustering al-
gorithm, and these approaches have become important tools
in computational biology [14]. AverageExplorer [40] allow
users to explore and summarize large collection of images by
interactively posing constraints.

Recently, there has been much interest in using visualization
to support the refinement of topic models [37, 18, 8]. Since
the latent topics extracted by the algorithm are not always
semantically meaningful [29, 7], different constrained topic
models [27, 28] have been developed. Systems like [37, 18]
also allow users to iteratively refine the model based on their
preference. However, those models always require solving
a complicated optimization problem with some very specific
constraint. In contrast, our framework remains flexible and
could adapt to different applications.

Hyper-parameter tuning

Hyper-parameter tuning has been an important yet difficult
problem for machine learning. Besides hand tuning, re-
searchers have developed auto tuning algorithms including
random search [3], gradient based methods [26, 2], reinforce-
ment learning [10] or bayesian optimization [34]. However,
those auto tuning algorithms are compute-intensive and turn
out to be impractical for many problems. On the other hand,
all those algorithms try to search the parameter space based
on the final training loss or validation loss of the current pa-
rameter setting as well as some prior information of model
structure. This is mimicking human tuning strategy and hu-
man may actually do much better if machines can only con-
duct limited number of experiments. Recently, methods us-
ing bandit optimization such as [24] began to explore early
stopping strategy which saves a lot of computation. This
also provides intuition that interactive parameter tuning could
leverage information during live training. Also, all these algo-
rithms above require one fixed quantitative goal, while in our
case such goal doesn’t exist. Users often need to trade-off dif-
ferent criteria by observing their corresponding performance
indicators at the same time.

Hyper-parameters can be very different. There are struc-
tural hyper-parameters such as the type of the activation func-
tion and number of layers in a neural network. Such hyper-
parameter can not be changed after the training is started.
Also, there are hyper-parameters whose behavior are hard
to interpret, such as the learning rate, momentum rate. Our
toolkit is not focusing on those hyper-parameters. Instead,
we tune hyper-parameters which can have interpretable visual
feedback. As we are tuning the weights of the loss function
which therefore change the weights of their gradient direc-
tions, the value of the corresponding loss functions will go
up and down. Also, sparseness, correlation, cluster-size dis-
tribution are human-interpretable concepts that can be seen
directly from the model visualization of Topic modeling or
K-Means.

SYSTEM DESIGN

BIDMach: high-performance, customized machine learn-
ing toolkit

The first key to interactive and customized machine learn-
ing is an architecture which supports it. BIDMach [6] is a
machine learning toolkit which has demonstrated extremely
high performance with modest hardware (single computer
with GPUs), and which has the modular design shown in Fig
1. BIDMach uses minibatch updates, typically many per sec-
ond, so that models are being updated continuously. This is a



good match to interactive modeling, since the effects of ana-
lysts actions will be seen quickly. Rather than a single model
class, the system comprises first a primary model (which typi-
cally outputs the model loss on a minibatch and a derivative or
other update for it). Next an optimizer is responsible for up-
dating the model using the gradients. Several are available in-
cluding simple SGD, AdaGrad [13] etc. Finally, mixins rep-
resent secondary constraints or likelihoods. Gradient-based
primary models and mixins are combined with a weighted
sum. In our interactive context, these weights are set interac-
tively.
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Figure 1: BIDMach’s Architecture

BIDMach uses roofline design [36] to optimize computational
kernels toward hardware limits. On a large collection of
benchmarks it has proved to be typically two orders of mag-
nitude faster than other single-machine toolkits (when BID-
Mach is used with a GPU), and one to two orders of mag-
nitude faster than cluster toolkits running on 10-100 nodes.
Part of the difference is due to BIDMach’s complete suite of
GPU primitives. Almost all computation is done on the GPU,
CPU/GPU transfers are minimized, and custom kernels give
close to theoretically optimal GPU performance. GPUs typi-
cally achieve an order-of-magnitude speedup in dense matrix
operations vs. mid-range CPUs.

Less well known is their advantage in main memory speed,
which (at 300 GB/s) is nearly an order-of-magnitude faster
than recent quad-channel CPUs (at around 40 GB/s). This
memory speed gap also gives GPUs a similar advantage for
sparse matrix operations which are central to most real-world
ML applications. These differences explain one order of mag-
nitude of the performance gap that we observe with BID-
Mach. The balance is due to the fact that most other sys-
tems are not close to their (CPU) rooflines. Because of this
BIDMach has a significant performance edge for most ML
algorithms even when run on one CPU.

High performance is very important for interactivity. BID-
Mach has reduced the running time of many non-trivial ML
tasks from hours to minutes. And even for models that take
minutes to train fully, the effects of parameter changes are
typically visible in seconds due to mini-batch online learning
algorithm. We will see this in the examples later.

Secondary criteria as Mixins

Model customization is useful for both supervised and un-
supervised problems. Unsupervised learning involves a cer-
tain amount of arbitrariness in the criteria for the “best” latent
state. Therefore regularization is widely used as a secondary
constraint on the primary objective [27, 28, 37].

In a bit more detail, clustering algorithms like K-Means usu-
ally use the measure of sample/centroid similarity, and may
use inter-cluster distance or cluster size as measures. Indeed,
unsupervised learning models are often evaluated using a va-
riety of criteria that are much more complex than the criteria
used to derive the learning algorithms [29, 7]. The same holds
true for topic models such as LDA, NMF and Word2Vec, and
for collaborative filtering.

This is a paradox. Clearly one should get better scores for
these criteria if they were directly optimized as part of train-
ing. Beyond these standard criteria, there are many others
that are commonly used in the applications of machine learn-
ing. Historically it has probably been too difficult to optimize
these criteria (the criteria may be expensive to evaluate, or
non-locally computable). Also simply scoring a model is not
enough for optimization — one needs to know how to change
the model to improve it, e.g. through a likelihood derivative.

On the other hand, computing power is abundantly available
now, especially in graphics processors. The bottleneck is of-
ten moving data rather than computing on it. Thus it is often
practical to evaluate multiple, relatively complex criteria as
part of optimization.

Combining these approaches, we can deal with a variety of
secondary or “mixin” criteria as part of the learning process.
In our present implementation, we use a linear combination
of cost functions for primary and secondary criteria:

arg mlln fo(z,d) + Z i * fi(x) (D

Where z is the model parameters, d is data, fj is the primary
cost function and f; are the user-defined Mixin functions. The
weights \; are “controls” that are dynamically adjusted by
the analyst as part of training. For the primary criterion f
and each secondary criteria f; there should be at least one
dynamic graphic that captures changes in that criterion in an
intuitive way. The analyst watches these as each of the con-
trols are adjusted to monitor the tradeoff between them.

Client-server visualization architecture

With all the pieces above, we are able to use a client-server
architecture with 3 components as shown in Fig 2: a comput-
ing (BIDMach) engine, a web server, and a web based front
end. BIDMach is implemented in the Scala language which
supports concurrency with high level “actor” primitives. An-
other thread runs in the same Scala runtime, communicating
with the web server. This thread receives parameter updates
from the web server, and updates the corresponding model
training parameters. As the model is trained, primary and
mixin cost functions are evaluated on minibatches, providing
regular updates which are passed to the web server.
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Figure 2: Visualization Architecture

In the client side, we implement a web based interface which
uses D3.js[5] for data visualization. D3 is widely used, has
very powerful graphics elements and good support for anima-
tion. As a browser-based system, it runs transparently with a
local or remote server. We will discuss the interface design in
detail in the next section.

The communication between the client and server is bi-
directional, with both client and server initiating transfers.
We therefore use WebSockets instead of e.g. a one-way
RESTful web service. For simplicity and extensibility, we
use JSON as the over-the-wire exchange format.

INTERFACE DESIGN

In this section, we describe the visual interface of our inter-
active machine learning system. Our approach relies on a
dynamic visual interface that provides streaming feedback to
the user.

Visual dashboard

We use a dashboard approach where user can customize their
own visualizations. As shown in Fig 3, the left side of the
interface contains the menus and control sliders. From the
menus, a user can select the metrics and controls for the mod-
eling task. A corresponding control or metric visualization
is then added to the dashboard, which can then be dragged,
dropped and resized. There is at least one corresponding per-
formance indictor for each control parameter, and more than
one can be added to the dashboard. The details of each visu-
alization component will be described next.

Visualizing the model

As mentioned earlier, machine learning algorithms can be
formalized as finding the best model parameters = given an
objective function f(x,d). For a variety of models, directly
visualizing the model parameters provides a nice summariza-
tion for the current training and users can gain a general un-
derstanding about the behavior of the algorithms. It can also
help identify obvious errors and verify assumptions or intu-
itions. While there are different types of data and algorithms,
the visualizations are necessarily model-specific, and should
provide a natural interpretation of the model directly.

For image data, clusters can be visualized directly. The im-
ages we tend to visualize can either be the cluster centers as in
Fig 4a, or learned image dictionary using dictionary learning
algorithms like NMF[23], as in Fig 4b.

For more general matrix data, a simple direct visualization
of element weights can usually work well. This was the ap-
proach taken in the Termite system [8] and we use it for our
topic model, which will be described in details in the use
cases section. As shown in Fig 4c and 4d, the area of each
pink circle in row ¢ and column 5 encodes the corresponding
value from the matrix. In the topic model case, that encode
the weight (likelihood) for word 7 to be appeared in topic j.
We also display the word label on the left side of each row to
help people interpret the results.

One common challenge for visualizing topic model comes
from the huge size of the model. Typically there are hun-
dreds or thousands of topics and tens of thousands of differ-
ent words. Limited screen size and limited human perception
power require us to filter out information according to some
saliency metric[8]. The metric will provide an ordering to
show only the most important words and topics. Also, such
an approach can significantly reduce the amount of data that
need to be transferred from the server to the client.

However, as we are displaying in real-time an evolving
model, having a simple, consistent metric for ordering can ac-
tually help users interpret the visualization and avoid confu-
sion. We therefore only use the total weights across all topics
to rank the words. This approach will show more redundant
words comparing to the original Termite design. But the main
goal here is to analyze the dynamics of the algorithm, rather
than the model itself. In order to support a detailed zoom in
for each topic, we also support ranking words using weight
from a particular topic alone. This feature will be triggered
when users mouse over the topic title, as shown in Fig 4d. It
also helps the users to compare different topics.
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Figure 4: Model visualization
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Figure 3: Dashboard for KMeans using MNIST dataset

Continuous visualization of model quality

As described in Equation 1, we are optimizing an additive
function which consists of a main loss term as well as sev-
eral Mixin terms. The value of the cost function can reflect
how the model behaves under each criteria. As the engine
computes the update, we visualize those metrics as streaming
data, as shown in Fig 5. Visualizing the main loss function
is very important when we change the control parameters. It
will reflect how the algorithm responds to the user control
and whether the tradeoff for Mixin functions may affect the
general model performance.

As discussed earlier, the main loss function is computed on
each minibatch, and is a single scalar. We use a simple, dy-
namic curve plot to display its state. This plot style is easy to
read and understand. With the parameters fixed, one normally
sees a rapid initial increase in likelihood, followed by a slow
increase on a plateau as in Fig 5.
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Figure 5: Continuous visualization of the likelihood function

Visualizing other performance indictors for clustering

As mentioned above, the evaluation of unsupervised cluster-
ing algorithm is hard in general. Therefore showing multiple
aspects of the clustering results at the same time would help
users better interpret the model.

Cluster size distribution

To examine the cluster size balance, we are interested in the
distribution of cluster sizes. The natural visualization for this
kind of data is a histogram or kernel density plot. Fig 6a
shows the size distribution for the clusters of digits on the
MNIST dataset.

Silhouette graph
Another useful metric is the widely used silhouette graph (Fig
6b) for evaluating clustering results. The silhouette score is
calculated for each data point x; as:

bj —aj;

Sj—

— 2
max(aj,b;) @
Where a; is the average distance between x; and all other
data points in the same cluster, b; is the lowest average dis-
tance of x; to any other cluster.

It could be seen that —1 < s; < 1 and larger values indi-
cate better clustering results. Silhouette graph then shows the
silhouette score for each data point as horizontal line. Data
points are grouped by cluster and are sorted by their silhou-
ette score vertically. The silhouette graph can intuitively show
how tight it is for each cluster by showing the silhouette score
distribution within that cluster. A low silhouette score typi-
cally indicates small clusters are at the periphery of larger
ones.



(a) Distribution of Cluster Size (b) Silhouette graph

Figure 6: Performance indictors for clustering

Slider controls

Along with the visual interface, we also provide several kinds
of control including weights for Mixin, learning rate, temper-
ature etc. So far these are all continuous scalars, and are all
implemented as slider widgets. When the user selects one of
the controls from the menu, a labeled slider widget is created
on the dashboard.

USE CASES

In this section, we will demonstrate how to use our system
for interactive model customization using KMeans and topic
model algorithms on some real-world datasets.

KMeans

Our first application is the KMeans algorithm, which is a
widely used clustering algorithm. Though the algorithm is
simple, it can find very useful feature representations if used
properly [9]. Also, it is well known that KMeans is very sen-
sitive to initialization and distance metrics. It can easily go
into local optimum and hard to escape during the training. In
this section, we will discuss how to address those problems
using our system.

Implementation and evaluation for KMeans

For KMeans, the primary loss function is inertia: the sum of
squared distances from points to their centroid. The KMeans
algorithm starts off by randomly initializing k cluster centers.
Then, during each iteration, it assigns data points to their clos-
est cluster, and for each cluster, re-computes its center using
the average of the elements in that cluster.

However, as mentioned previously, the evaluation and tuning
of the KMeans algorithm turn out to be hard. We therefore
use multiple criteria to examine different aspects of the clus-
tering results. Aside from the main loss, we use silhouette
graph to measure how tight it is for each cluster. A low sil-
houette score typically indicates small clusters at the periph-
ery of larger ones.

Besides, we also use cluster size balance as a criteria, which
adds penalty to clusters that have bigger size. The optimiza-
tion problem is then to partition the dataset X into k disjoint

sets s by minimizing the following loss:

argmin (37 llay — il + Asi?) )

1 JES;

Where |s; | represents size of the i-th cluster, and p; represents
the center of the i-th cluster.

The size balance criteria could be naturally visualized with a
histogram. This criteria can also be approximately optimized
within the KMeans algorithm. The overall minimization al-
gorithm then becomes:

id(w) = argmin |[|p; — x[[3 + Als;] )

Where id(z) is the assigned cluster id for data point .

The loss term A = |s;| penalizes clusters with a larger size.
The algorithm would prefer to assign new data points to a
smaller cluster, which will tend to balance cluster sizes over
time. Size homogeneity matches most users’ intuition about
clustering, and it may also be important for accurate estima-
tion of cluster statistics. The A also becomes a parameter that
we can interactively tune.

Incremental update

In order to take the advantage of mini-batch processing
which can return early feedback during the training, we
follow a similar approach to [39] for incremental KMeans
updating. And we also need an averaging update for size; to
maintain its scale and make the visualization consistent. For
each batch {z;}, we compute the update as:

>,z * L(id(z;) = 9)
>, 1(id(z;) = 9
wi = (1 —n) * u; +n * average; )
size; = (1 — ) * size; + « * Z 1(id(z;) = 1)
J

average; =

Normally 7 and o are set to 0.1 ~ 0.2.

Experiment on MNIST dataset

We ran an experiment on the MNIST dataset [22], which con-
tains 8 million 28 x 28 x 3 RGB images of hand written digits.
We train the model using NVIDIA Titan X GPU, which could
process roughly SO0MB raw data (16.7k images) per second.
As we set the mini-batch size to be 50000, every second the
system could perform 3 batch updates, which is enough for
real-time visualization.

In our dashboard shown in Fig 3, we choose to visualize the
main loss, cluster size distribution, as well as the silhouette
graph. The main loss is the averaging distance between the
data points and their assigned cluster centers.

The parameter that we choose to tune is the weight for size
balance X in eq(4), which we refer as sizeWeight in the in-
terface. Initially, we set the number of clusters K as 256
and we assigned a small value to sizeW eight, so that the al-
gorithm will behave as the original KMeans algorithm. As
shown in Fig 7a, the likelihood is gradually improving and
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Figure 7: Interactive tuning for KMeans

it quickly converges to local minimum. The cluster size
distribution is quite diverse. We then slightly increase the
sizeWeight , which gives us a more concentrated cluster size
distribution, while the main loss and silhouette score are not
affected, as shown in Fig 7b. This implies that the algorithm
now moves to another local optimal by assigning some data
points to a suboptimal but smaller cluster. Notice that this has
almost no effect on the primary likelihood.

However, as we continue to increase sizeWeight, the loss
will start to increase, and the silhouette graph also shows
more defects (more negative area) (Fig 7c). From here, we
decrease the sizeWeight. Since the KMeans algorithm is
incremental, this change brings us back to the loss that it has
before, as shown in Fig 7d. This example illustrates the trade-

offs that can be made, and the speed of recognizing poor pa-
rameter choices.

Experiment on ImageNet dataset

ImageNet[11] is a widely used image-classification dataset
which contains millions of labeled images. The recent suc-
cess of applying convolutional neural network[21] not only
achieves human-level performance in image-classification
task, but also provides powerful feature embedding methods
that could be used for semantic image clustering[12] and neu-
ral style transfer [16] which decomposes each image into dif-
ferent semantic features. For examples, image clustering can
have many different criteria such as clustering by shape of the
objects, by scene of the background, or by semantic meaning
of the objects. Those criteria can be expressed as different
distance metrics in KMeans algorithm, and can be merged



into one metric using tunable weights. Therefore, users can
tune those weights via our interface to try different combina-
tions of the distance metric in real-time.

To conduct the experiment, we use the caffe[19] toolkit to
generate feature embedding by feeding each image into a
pre-trained neural network for a forward pass. The activa-
tion output from each network layer then becomes the fea-
ture for that image. We use the reference caffenet model
(AlexNet), and to reduce memory footprint, we only use out-
put from pooll, pool2, pool5 layer. The pooll and pool2 lay-
ers capture low-level visual features while the pool5 layer has
higher-level features which are invariant to scale and loca-
tion. One 227 x 227 x 3 RGB image will then generate a
27 x 27 x 96 pooll feature, a 13 x 13 x 256 pool2 feature and
a6 x 6 x 256 pool5 feature. We concatenate these 3 features
into one 122464 dimensional vector. The distance function
we used is straightforward: just apply the L2 distance on each
of these 3 features and then compute the weighted sum:

d(%y) = 81 % Q1 * prooll - ypooll||2
+82 * g * proolQ - ypool2||2 (6)

+83 * iz * proolS - y;nool5||2

Where a1, ag, aig are normalization constants to make those
3 metrics have the same scale. During training, users can tune
s1, S2, S3 via the interface to change the distance metric.

We use 8 different classes of images from the ImageNet
dataset, which contains about 13000 images. Since each im-
age contains a huge dense feature vector, our system can pro-
cess about 1200 images per second when K is 128. We there-
fore set mini-batch size to be 512. The interface of the system
is shown in Fig 8. We sort the clusters by their size which are
shown in the titles. For each cluster, we show 20 randomly
selected images to represent that cluster.

By tuning the weights for the distance metric, we can get dif-
ferent clustering results as shown in Fig 9 and Fig 10. Clus-
ters generated by pool5 feature usually have consistent se-
mantic meaning, that most images come from the same cate-
gory. While clusters generated by pooll feature usually con-
tain images with similar object shape or color.

Besides using only one kind of feature, we can use a mixture
of them. We can even smoothly transit from one distance met-
ric to the other during the training. Such transit is equivalent
to using the previous clustering results as the initial cluster
centers. Comparing to the random initialization, this gives
us more flexibility and can yield more interesting results, as
shown in Fig 11. On the other hand, changing the distance
metric during training can help the algorithm escape from lo-
cal optimal.

Topic Model

We then apply our system to topic modeling using Latent
dirichlet allocation(LDA)[4], one of the most widely used
topic model algorithm. Topic model has many applications
since it can find compact representation of a large document

Select a Model

KMeans-Imag...
Select a Metric
likelihood

Select a Parameter

-900000
-1000000
-1100000

-1200000
-1300000
-1400000
-1500000
-1600000
-1700000
-1800000

-1900000

T T
i7 92 17 142 167

M likelihood

Figure 8: Clustering on ImageNet data

set. However, as discussed in [7], results generated by maxi-
mizing the likelihood objective may actually infer less seman-
tically meaningful topics. This raises the question of how to
do model selection. On the other hand, automatic evaluation
of topic quality [29] is complicated and users may have dif-
ferent criteria at the same time. Our system allows users to
make judgement directly from the model results, and to fine-
tune the model by adjusting weights of the mixin functions.

Implementation

LDA is a generative process to model the documents. For
each document d, it proceeds as follows (X is the number of
latent topics):

e Draw a topic distribution for the document d as 6; ~
Dirichlet(a), a K-dimensional Dirichlet prior.

e For each word position ¢ (across all docs), draw a topic
index z4; € {1,..., K'} from zq4; ~ 64

e Draw the word wg; from the multinomial distribution
Wq; ~  Pa,,;» which also has a prior: ., ~
Dirichlet(3)

Where «, and (3 are hyper-parameters specifying the Dirichlet
prior. The other two parameters of the model are 8, which can
be represented as a document-topic matrix, and ¢, the word-
topic matrix. The algorithm therefore is to use Gibbs sampler
to draw samples for hidden states z;:

Px(za; = k|z—q:, 0,8, 2a; = w) ~ g % 0p  (7)

After drawing the samples, model updates for 6’ and ¢’ can
be computed via Maximum Likelihood Estimation. In addi-
tion, the strength of the model is measured by the likelihood.
In order to apply annealing to the optimization procedure, we
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use SAME sampling [38] to draw m independent samples in-
stead of just one from Z each time. This results in a cooled
Gibbs sampler and the parameter m can be used to control
the temperature. A low value of m gives a higher-variance
random-walk while increasing m can cause parameters con-
verge to a nearby optimum. By default m is set to 100, and it
can be tuned during the training. We refer to m as nsamps
in the interface.

Incremental update for LDA as described in [17] is used.
Model will be updated after each mini-batch data is pro-
cessed.

Mixins

Mixins are functions that capture users’ intention for model
customization. Here we use two kinds of mixins: A L1-norm
function to approximately measure sparseness:

fi(e) = el (®)

and a pairwise cosine-similarity function to measure the sim-

ilarity of the topics:
=> O biweiw) ©)
i#j W

As describe in the system design section, the implementation
is very straightforward. For each mini-batch, after comput-
ing the model update ', we also compute the sub-gradient
update for the mixins:

91(kw) = 8ign(Prw)

= (i) (10

92 kaw

We then add them into the model using the weighted averag-
ing approach we discussed above:

i1 = (1 —a)pr + g’ — Mg1(pe) — Aaga(pr)  (11)

We refer the weight \; as L1 —reg since it is equivalent to the
common L1-regularization technique, and A5 as CosineSim
in the interface.

Experiment on NYTimes dataset

We run an experiment on the NYTimes dataset [25], which
contains about 300K documents, 102K different words and
a total of 100 million word tokens. The size of the sparse
matrix format data file is about 522MB. We train our model
using Titan X GPU.

To demonstrate the usage of our system, we set the topic num-
ber K to be 32, since smaller topic number makes topics
more likely to overlap with each other. We also set the ini-
tial weights for both mixins as 0. Our system can process
about 15000-20000 documents per second. We therefore set
mini-batch size to be 5000 in order to receive 3-4 update per
second. The algorithm’s behavior is shown in Fig 12. The
likelihood quickly converges to a local optimal, but the topic
results are still very noisy, and the topics are overlapping. We
then adjust the L1 —reg slider away from zero. However, tun-
ing L1 —reg alone may not always yield changes because the
model may be trapped in a local optima. Since SAME sam-
pling is used in our LDA implementation, we can decrease
nsamps to increase the variance of the random-walk, which
makes it easier to jump between possible solutions.

After we increase the temperature, as shown in Fig 13, the
likelihood drops significantly but we get a very sparse model.
Afterward, we set the L1 — reg back to a small value and use
a large nsamps which prevents large changes in model state.
This is equivalent to only allowing the model to make very
small movement around that local optimal. From Fig 14, we
can see that the likelihood returns to a normal value while the
sparsity is maintained.

Such hyper-parameters scheduling is hard to obtain without
interaction. The model likelihood and sparseness seems to be
conflicting goals, but we are able to optimize both when using
a particular scheduling.

With the same topic number K, after the algorithm con-
verges to a local minimum, we instead increase parameter
cosineSim to a reasonable scale. As we can see in Fig 15,
the cosineStm mixin function value starts to decrease and
converges to 0 at last. While at the same time, the likelihood
function maintains at the original level. Besides the original
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goal to reduce pair-wise topics similarity, we can observe that
the model becomes sparse and the noise is removed as well.

This implies that two mixin functions can both improve
sparseness, and that they have very different effects on the
model likelihood. If we compare the two mixin gradient
functions carefully, the L1 — reg update is actually perform-
ing a hard thresholding that each entry in the matrix will
be subtracted by a constant value. On the other hand, the
cosineSim gradient subtracts a value that is relative to the
total weight in other topics: (3, ¢iw) — @k,w- Therefore,
L1 — reg will force many long-tail words to have 0 weight in
any topics which results in worse model likelihood. But for
the cosineSim gradient update, at least the dominant weight
for each word will be kept. And the noisy weights, which
are relatively smaller than the dominant ones will receive a
higher penalty, and quickly approach 0.

This example demonstrates that even a simple mixin func-
tion can have multiple effects on the model quality. And it
would be hard to predict the final outcome when multiple op-
timization objectives are combined together. In our system,
this problem is expressed as a hyper-parameter tuning task
and we allow the users to do model selection based on the
full spectrum of information.

CONCLUSION & FUTURE WORK

We have demonstrated how to perform interactive optimiza-
tion on customized models using our system. Using mini-
batch based online algorithms with the GPU accelerated
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Figure 14: Likelihood back to normal, sparsity preserved
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Figure 15: Cosine similarity decreased

toolkit, we are able to get real-time feedback which makes the
interaction possible. The use of Mixin function or secondary
loss function provides a convenient and useful way to cap-
ture user’s intuition and create customized model. To solve
those multi-objective optimization problems, we allow users
to fine-tune hyper-parameters based on the feedback from vi-
sual dashboard during training time.

In the examples of KMeans and topic model algorithm, we
show that interactive optimization has several benefits includ-
ing trading off multiple criteria at the same time, setting adap-
tive temperature schedule, helping algorithm to escape from
local optimal etc.

More mixins functions can be tried in the future. Moreover,
our system is not limited to unsupervised learning algorithms.
Some concrete examples of competing goals in supervised
learning include computational marketing where the primary
goal is to maximize revenue, but where secondary goals in-
clude user satisfaction, advertiser satisfaction, and budget
constraints.

On the other hand, supporting pause and replay in the future
would be really helpful for users to navigate different versions
of model.
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